2012 Jesup-Wayne County Airport Pavement Management Plan

Preserving Georgia's Critical Airport Pavement Infrastructure

Acknowledgement

This document was produced under the auspices of the

GEORGIA DEPARTMENT OF TRANSPORTATION

Keith Golden, PE, Commissioner Russell McMurry, PE, Chief Engineer

DIVISION OF INTERMODAL

Carol L. Comer, Director

GEORGIA STATEWIDE PAVEMENT MANAGEMENT STUDY

Carla Sands, Project Manager

STATE TRANSPORTATION BOARD

1st District – Jay Shaw, Vice Chairman 2nd District – Johnny Floyd, Chairman

3rd District – Sam Wellborn

4th District - Robert L. Brown, Jr.

5th District – Emory C. McClinton

6th District – Brandon L. Beach

7th District – Rudy Bowen

8th District - Jim Cole

9th District – Emily Dunn

10th District – Don Grantham

11th District – Jeff Lewis

12th District – Bobby Parham

13th District – Dana Lemon

The preparation of this report was financed in part through a planning grant from the Federal Aviation Administration (FAA) as provided under Section 505 of the Airport and Airway Improvement Act of 1982. The contents of this report do not necessarily reflect the views or policy of the USDOT or the FAA, and do not constitute a commitment on the part of the United States to participate in any development depicted therein, nor does it indicate that the proposed development is environmentally acceptable in accordance with applicable public laws.

JESUP-WAYNE COUNTY AIRPORT

PAVEMENT MANAGEMENT REPORT

Prepared By:

Applied Pavement Technology, Inc. 115 West Main Street, Suite 400 Urbana, Illinois 61801 217-398-3977 www.appliedpavement.com

CDM Smith

In Association With:

CDM Smith 3715 Northside Parkway NW Building 300, Suite 400 Atlanta, Georgia 30327

Prepared For:

Georgia Department of Transportation Aviation Programs 600 West Peachtree Street, NW Atlanta, GA 30308 404-631-1000 http://www.dot.ga.gov

DECEMBER 2012

TABLE OF CONTENTS

INTRODUCTION	
METHODOLOGY	
Records Review and Network Definition	3
Pavement Evaluation Procedure	
Paint Markings Evaluation Procedure	
Development of Maintenance and Rehabilitation Program	6
Analysis Parameters	6
Critical PCI Values	6
Budget and Inflation Rate	6
Maintenance Policies	
Unit Costs	
Analysis Approach	
RESULTS	
Pavement Inventory	
Pavement Evaluation and Paint Assessment	
Inspection Comments	
Runway 11-29	
Taxiway	
Apron	
T-Hangar	
Overall Condition	
Maintenance and Rehabilitation Program	
GENERAL RECOMMENDATIONS	
Maintenance	
Remaining in Compliance with Public Law 103-305	
SUMMARY	16
LIST OF FIGURES	
Figure 1. Pavement Condition versus Cost of Repair Figure 2. Visual Representation of PCI Scale Figure 3. PCI versus Repair Type Figure 4. Pavement Inventory Figure 5. Network Definition Map Figure 6. Condition Distribution Figure 7. Condition by Use Figure 8. PCI Map.	4

LIST OF TABLES

Table 1. Critical PCI Values.	6
Table 2. Pavement Evaluation Results	13
Table 3. 5-Year Program under an Unlimited Funding Analysis Scenario	14
APPENDICES	
Appendix A – Cause Of Distress Tables	A-1
Appendix B – Photographs	B-1
Appendix C – Inspection Report	C-1
Appendix D – Maintenance Policies and Unit Costs	
Appendix E – Maintenance Plan Organized By Section	E-1
Appendix F – Maintenance Plan Organized By Repair Type	F-1

INTRODUCTION

In 2012, the Georgia Department of Transportation – Aviation Programs (the Department), selected Applied Pavement Technology, Inc. (APTech), assisted by CDM Smith, to update its statewide airport pavement management system (APMS). This study will provide airports and the State with pavement information and analytical tools to help identify pavement related needs, optimize selection of individual airport projects over a multi-year period, and evaluate the long-term impacts of project priorities.

As part of this study, pavement conditions at Jesup-Wayne County Airport were assessed in 2012 using the pavement condition index (PCI) procedure. The results of that evaluation are presented within this report and can be used by the Department, the Federal Aviation Administration (FAA), and Jesup-Wayne County Airport to monitor the condition of airfield pavements and to identify, prioritize, and schedule pavement maintenance and rehabilitation (M&R) actions at the airport.

During a PCI inspection, the types, severities, and amounts of distress present in a pavement are visually quantified. This information is then used to develop a composite index that represents the overall condition of the pavement in numerical terms, ranging from 0 (failed) to 100 (excellent). The PCI number is a measure of overall condition and is indicative of the level of work that will be required to maintain or repair a pavement. Further, the information provides insight into the cause of pavement deterioration, which is the first step in selecting the appropriate repair action.

Programmed into an APMS, PCI information is used to determine when preventive maintenance actions, such as crack sealing, are advisable and also identifies the most cost-effective time to perform major rehabilitation, such as an overlay. The importance of identifying not only the type of repair but also the optimal time of repair is illustrated in Figure 1. There is a point in a pavement's life cycle where the rate of deterioration increases and the financial impact of delaying repairs beyond this point can be severe.

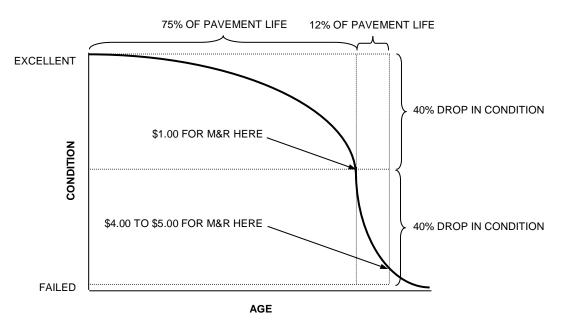


Figure 1. Pavement Condition versus Cost of Repair.

This study collected pavement history information, developed CAD maps, evaluated current pavement condition, and updated the Department's APMS. The APMS was used to prepare a 5-year pavement M&R program. Individual reports, such as this one, have been prepared for each individual airport as well as a statewide analysis report and an executive summary report in order to convey the study results.

METHODOLOGY

The study consists of three major work elements: records review and network definition; pavement condition evaluation; and the development of an M&R plan for the preservation of the pavement infrastructure. Detail of each work element is further described below.

Records Review and Network Definition

The first activities undertaken involved gathering historical airfield pavement data, which includes date of original construction and date of any subsequent rehabilitation; location of completed work; and the type of work undertaken.

The historical data is used to divide the pavement system into management units – branches, sections, and sample units. A branch is a single entity that serves a distinct function. For example, a runway is considered a branch because it serves a single function (allowing aircraft to take off and land). Taxiways and aprons are also separate branches.

A branch is further divided into sections. A section is considered the management unit of the APMS, and represents a pavement area where pavement maintenance or rehabilitation would be undertaken. For example, if a runway was built in 1968 and then extended and overlaid in 1984, this runway might be represented by a single section, even though there are two distinct construction periods. However, if the condition of one part of the runway was significantly different than another the branch would be divided into two sections because in that situation the runway may not be repaired as a whole in the future.

To estimate the overall condition of each pavement section, each section is subdivided into sample units. A percentage of these sample units are then evaluated during pavement inspections, and the condition information is extrapolated to predict the condition of the section as a whole.

Pavement Evaluation Procedure

Pavements were evaluated at Jesup-Wayne County Airport using the PCI procedure. This procedure is described in FAA Advisory Circular (AC) 150/5380-6B, *Guidelines and Procedures for Maintenance of Airport Pavements* and American Society for Testing and Material (ASTM) Standard D5340-11, *Standard Test Method for Airport Pavement Condition Index Surveys*.

The PCI provides a numerical indication of overall pavement condition, as illustrated in Figure 2. The types and amounts of deterioration are used to calculate the PCI value of the section. The PCI ranges from 0 to 100, with 100 representing a pavement in excellent condition. It should be noted that a PCI value is based on visual signs of pavement deterioration and does not provide a measure of structural capacity.

Typical Pavement Surface ¹	PCI
	100
	60
	20

¹Photographs shown are not specific to Jesup-Wayne County Airport.

Figure 2. Visual Representation of PCI Scale.

In general terms, pavements with a PCI greater than 70 that are not exhibiting significant load-related distress will benefit from preventive maintenance actions, such as crack sealing and surface treatments. Pavements with a PCI of 40 to 70 may require major rehabilitation, such as an overlay. Often, when the PCI is less than 40, reconstruction is the only viable alternative due to the substantial damage to the pavement structure. Figure 3 illustrates how repair type varies with the PCI of a pavement section.

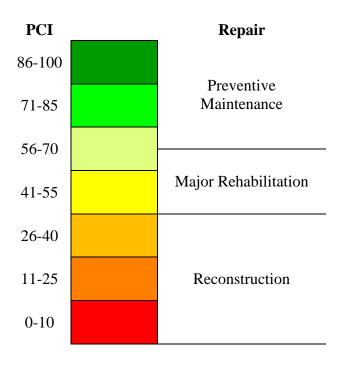


Figure 3. PCI versus Repair Type.

The types of distress identified during the PCI inspection provide insight into the cause of pavement deterioration. PCI distress types are characterized as:

- **Load-related** These distress types are defined as being caused by aircraft or vehicular traffic and may provide an indication of a structural deficiency. Examples of load-related distresses include alligator cracking on hot-mix asphalt (HMA) pavements and corner breaks on portland cement concrete (PCC) pavements,
- Climate/durability-related These distress types often signify the presence of aged and/or environment-susceptible material and include durability-related issues. Examples of climate/durability-related distresses include weathering, which is climate-related, on HMA pavements and durability cracking, which is durability-related, on PCC pavements, and
- Other Distress types that fall into this category cannot be attributed solely to load or climate/durability. Examples of this type of distress include depressions on HMA pavements and shrinkage cracking on PCC pavements.

Understanding the cause of distress helps in selecting a rehabilitation alternative that corrects the cause and thus eliminates its recurrence.

Appendix A contains tables for asphalt and PCC pavements indicating the typical types of distresses that may be identified during a PCI survey, the likely cause of each distress type, and feasible maintenance strategies for addressing each distress type.

Paint Markings Evaluation Procedure

The condition of the paint markings was evaluated for each section at Jesup-Wayne County Airport. The markings were rated as "satisfactory" or "non-satisfactory" based on whether the markings were visible and the paint and reflectivity appeared intact. Following is a short description of each category:

- Not Applicable (N/A): No paint markings exist to rate.
- <u>Satisfactory (SAT):</u> Markings that are still visible and in good condition, requiring no maintenance or remarking.
- <u>Non-satisfactory:</u> Markings that require maintenance or remarking in the near future and any of the following conditions are present:
 - Paint is faded to the point where markings are not easily visible from a distance (U-FA).
 - Paint is flaking off the surface or has worn to point that portions of the painted surface no longer have paint on them (U-CH).
 - Painted areas have a large amount of superficial cracking within their limits, degrading the integrity of the painted area and reducing its visibility (U-CR).

Development of Maintenance and Rehabilitation Program

Using the information collected during the 2012 pavement inspection, an M&R program for 2013 through 2017 was developed. The MicroPAVERTM pavement management software was used to perform this analysis.

Analysis Parameters

Several parameters were defined prior to running the analysis, and are further explained below.

Critical PCI Values

MicroPAVERTM uses critical PCI values to determine whether preventive maintenance or major rehabilitation is the appropriate repair action. Above the critical PCI, localized (such as crack sealing) and global (such as a slurry seal) preventive maintenance activities are recommended. Below the critical PCI, major rehabilitation (such as an overlay or reconstruction) is recommended. The Department set the critical PCI values shown in Table 1.

Airport Classification	Runway	Taxiway/ T-Hangar	Apron/Helipad
General Aviation	70	60	60
Commercial Service	75	65	65

Table 1. Critical PCI Values.

Budget and Inflation Rate

An unlimited budget and an inflation rate of 3 percent were used during the analysis.

Maintenance Policies

Localized preventive maintenance policies and global preventive maintenance policies were developed for the Department. Localized maintenance policies, shown in Appendix D, identify the localized maintenance actions that the Department consider appropriate to correct different distress types when the PCI of the pavement is above the critical PCI level.

Global maintenance actions were also considered in the analysis. These are treatments that are applied over an entire section, rather than just to distressed areas. Rejuvenators were considered for pavements that are more than 5 years old with a PCI value greater than 80. Rejuvenators were only applied once during the analysis period to eligible sections.

Unit Costs

Unit costs for maintenance treatments and major rehabilitation actions are presented in Appendix D. For general aviation airports, the costs were separated by geographic regions. MicroPAVERTM estimates the cost of major rehabilitation based on the PCI of the pavement. If major rehabilitation is recommended in the program, further engineering investigation will be needed to identify the most appropriate rehabilitation action and to more accurately estimate the cost of such work.

Analysis Approach

The goal of the M&R program is to maintain the pavements above established critical PCI values. Major rehabilitation was recommended for pavements in the year they dropped below their critical PCI value for 2013 through 2017.

For 2013, a localized preventive maintenance plan was developed for those pavement sections that were above their critical PCI value. If major rehabilitation was triggered for a section in 2014 or 2015, then localized maintenance was not recommended for 2013. It was assumed that all low-severity cracking would need to be resealed in 2017 unless major rehabilitation was triggered on the section. No other maintenance activities, other than crack sealing, were considered for year 2017.

RESULTS

Pavement Inventory

Jesup-Wayne County Airport has over 789,340 square feet of pavement, as shown in Figure 4. Figure 5 is a network definition map of the airport showing the pavement system broken down into management units, as described on page 3 of this report. It also shows the nomenclature used in the MicroPAVERTM pavement management database to identify the different pavement areas. Additionally, the map summarizes the construction history information compiled during the records review and identifies the areas inspected during the visual survey.

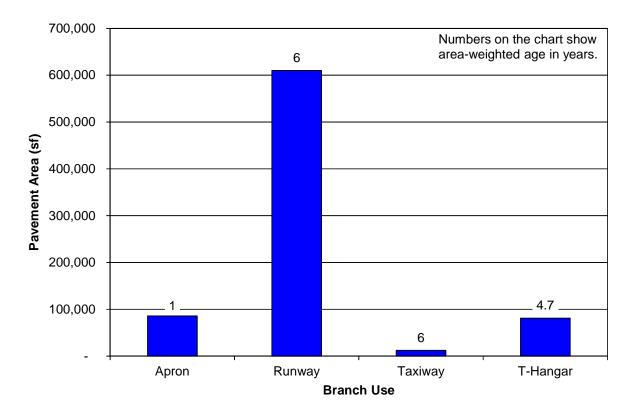
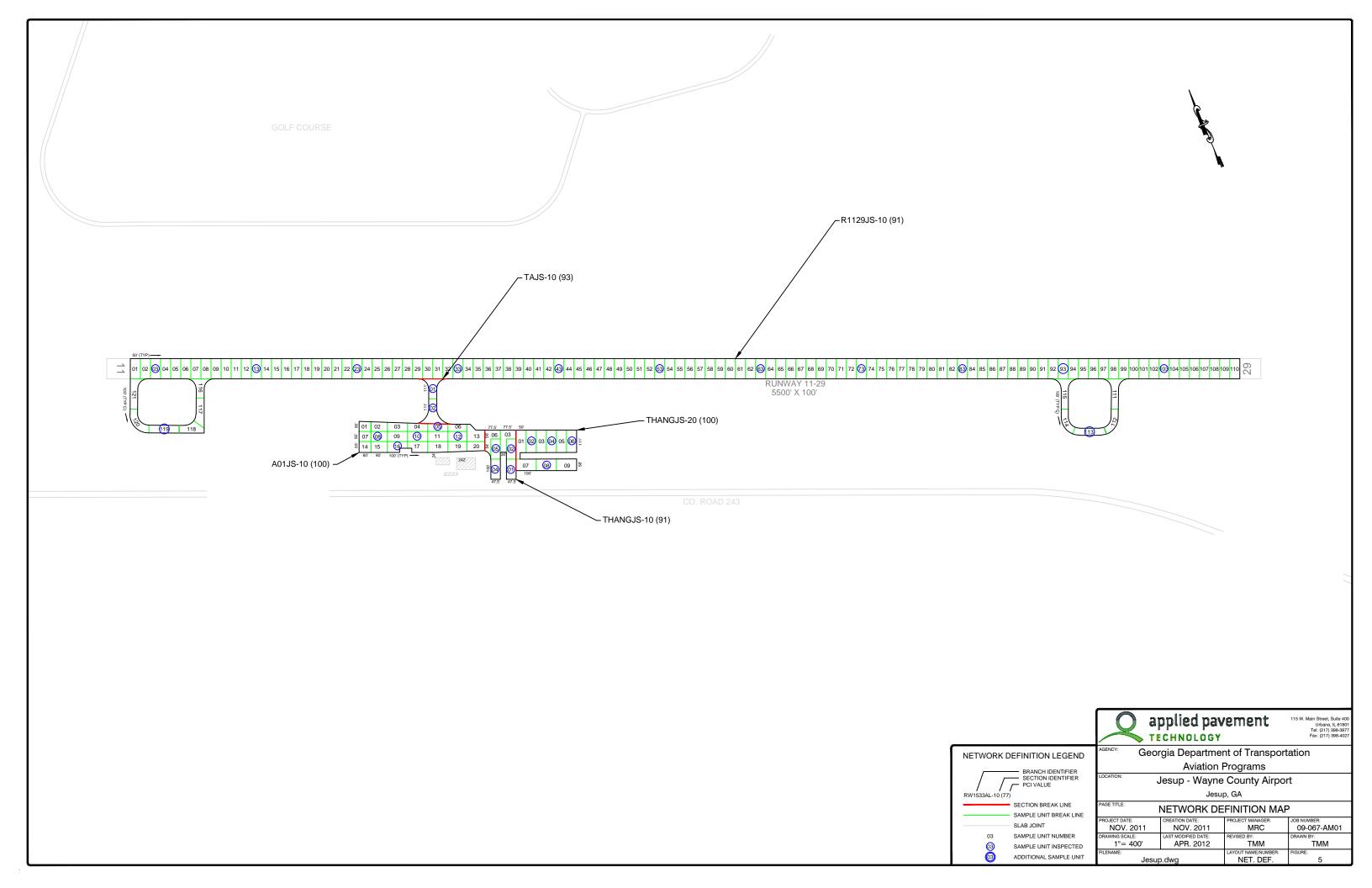



Figure 4. Pavement Inventory.

Pavement Evaluation and Paint Assessment

The inspection of Jesup-Wayne County Airport was completed on February 11, 2012 using the PCI procedure described previously. The map presented in Figure 5 identifies the sample units inspected during the pavement evaluation.

Inspection Comments

There were five pavement sections defined during the inspection.

Runway 11-29

Runway 11-29 was defined by one section with a PCI value of 91. Low-severity, unsealed longitudinal and transverse (L&T) cracking was observed along some of the paving lanes. Low-severity swelling was also recorded in small quantities.

Taxiway

Taxiway A was comprised of one section with a PCI value of 93. Low-severity, unsealed L&T cracking was identified in Section 10. Small quantities of low-severity swelling were also recorded.

Apron

The apron area contained one section in excellent condition with a PCI value of 100. No pavement distresses were observed during the inspection.

T-Hangar

The T-Hangar area was defined by two sections. Section 10 had a PCI value of 91 with low-severity, unsealed L&T cracking identified throughout. Section 20 was in excellent condition with a PCI value of 100. No pavement distresses were observed during the inspection.

Overall Condition

The 2012 area-weighted condition of Jesup-Wayne County Airport is 93, with conditions ranging from 91 to 100 [on a scale of 0 (failed) to 100 (excellent)]. This compares to a 2007 PCI of 95.

Figures 6 and 7 provide graphs summarizing the overall condition of the pavements at Jesup-Wayne County Airport. Figure 8 is a map that displays the condition of the pavements evaluated. Table 2 summarizes the results of the pavement evaluation and paint assessment and also presents both the 2007 and 2012 PCI values. Please note that modifications have been made to the PCI methodology since the time of the last pavement inspection in 2007, as detailed in ASTM 5340-11. These changes include the separation of the raveling and weathering distress type on asphalt-surfaced pavements into two distress types along with the addition of the alkali silica reaction (ASR) distress type on PCC pavements.

Appendix B presents photographs taken during the PCI inspection, and Appendix C contains a detailed inspection report. The detailed inspection report provides information on the quantity of the different types and severities of distresses observed during the visual survey.

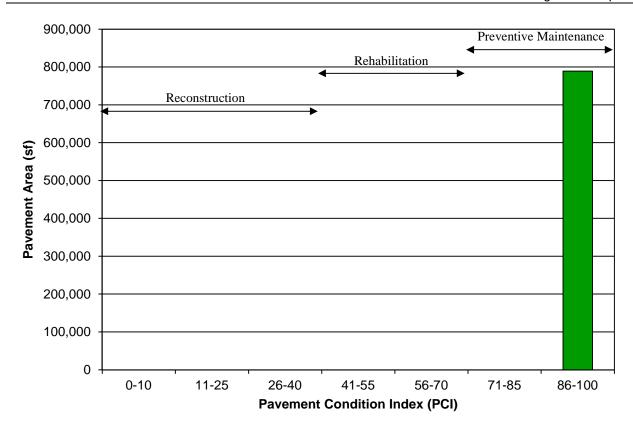


Figure 6. Condition Distribution.

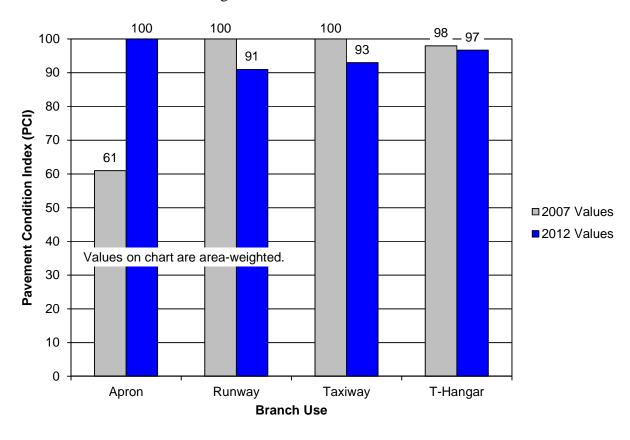
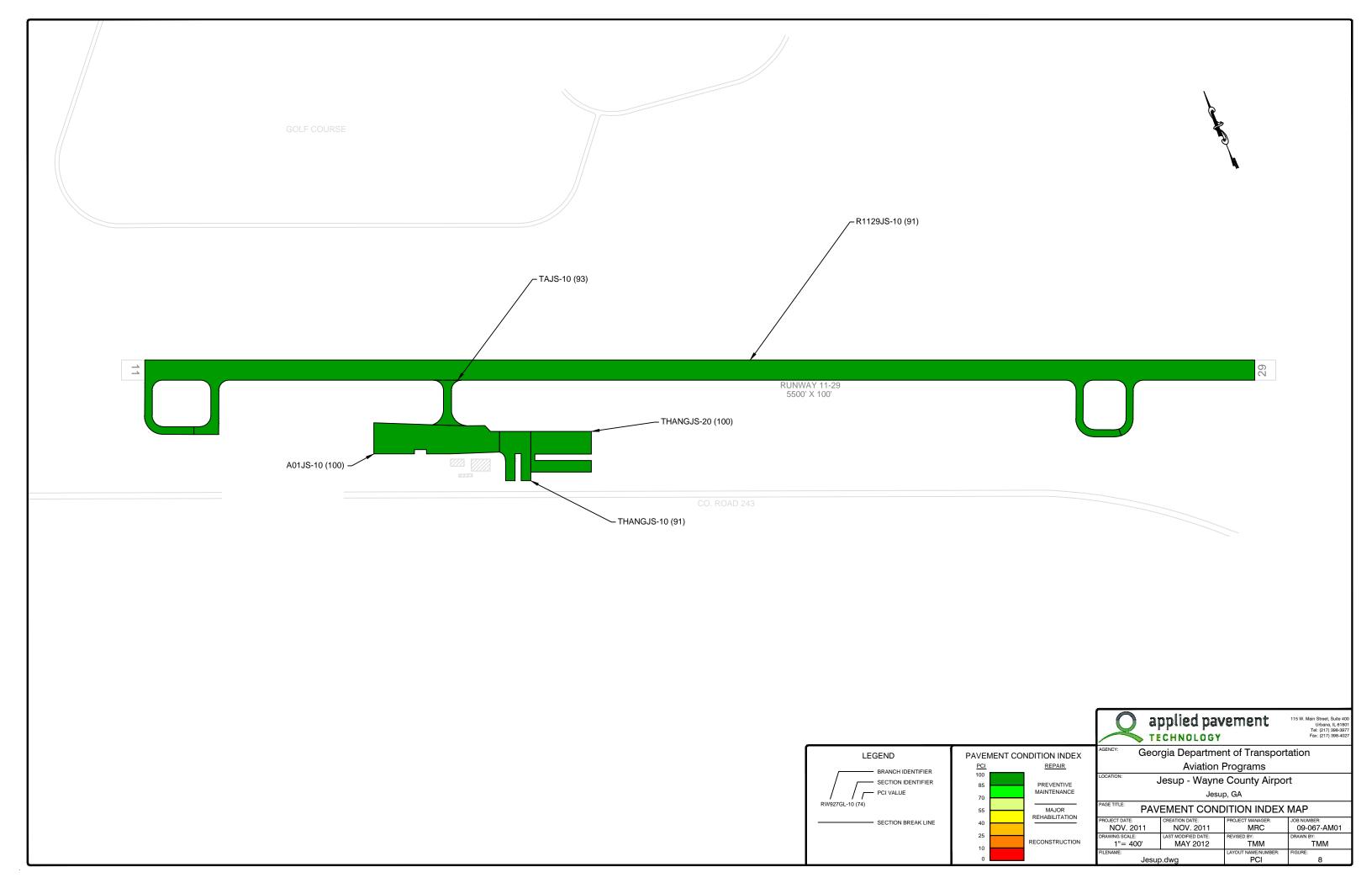



Figure 7. Condition by Use.

Pavement Management Report

Table 2. Pavement Evaluation Results.

		Surface	Section		Paint	2007	2012	% Dist	ress due to:	
Branch ¹	Section ¹	Type ²	Area (sf)	LCD ³	Markings ⁴	PCI	PCI	Load ⁵	Climate or Durability ⁶	Distress Types ⁷
A01JS	10	AAC	85,967	11/30/2011	SAT	61	100	0	0	No Distresses
R1129JS	10	AAC	609,845	6/1/2006	U-FA	100	91	0	90	L&T Cracking, Swelling
TAJS	10	AAC	12,291	6/1/2006	SAT	100	93	0	85	L&T Cracking, Swelling
THANGJS	10	AC	29,831	6/1/2001	N/A	98	91	0	100	L&T Cracking
THANGJS	20	AC	51,406	6/2/2011	N/A	N/A	100	0	0	No Distresses

NOTES:

¹See Figure 5 for the location of the branch and section.

²AC = asphalt cement concrete; AAC = asphalt overlay on AC; PCC = portland cement concrete; APC = asphalt overlay on PCC.

³LCD = last construction date.

⁴Paint markings condition: not applicable (N/A), satisfactory (SAT), unsatisfactory due to faded paint (U-FA), unsatisfactory due to chipping paint (U-CH), or unsatisfactory due to superficial cracking (U-CR).

⁵Distress due to load includes distresses attributed to a structural deficiency in the pavement, such as alligator (fatigue) cracking, rutting, or shattered concrete slabs.

⁶Distress due to climate or durability includes those distresses attributed to either the aging of the pavement and the effects of the environment (such as weathering or block cracking in AC pavements) or to a materials-related problem (such as durability cracking in a PCC pavement).

⁷L&T Cracking = longitudinal and transverse cracking.

Maintenance and Rehabilitation Program

The 5-year M&R program developed for Jesup-Wayne County Airport is described on page 6 of this report.

A summary of the M&R program is presented in Table 3. Detailed information on the localized maintenance plan for 2013 is contained in Appendix E and Appendix F. While localized preventive maintenance should be an annual undertaking at Jesup-Wayne County Airport, it is not possible to accurately predict the propagation of cracking and other distresses. The airport should budget for maintenance every year and can use the 2013 maintenance plan as a baseline for that work. As the pavements age, it can be assumed that the amount of localized maintenance required will increase.

Because an unlimited budget was used in the analysis, it is probable that the pavement repair program will need to be adjusted to take into account economic and/or operational constraints. Further, the identification of the need for a major rehabilitation project does not mean that federal or state funding will be available to complete the work in the year shown. It is important to remember that regardless of the recommendations presented within this report, Jesup-Wayne County Airport is responsible for repairing pavements where existing conditions pose a hazard to safe operations.

Note these recommendations are based on a broad network-level analysis and are meant to provide Jesup-Wayne County Airport with an indication of the type of pavement-related work required during the next 5 years. Further engineering investigation will need to be performed to identify exactly which repair action is most appropriate and to more accurately estimate the cost of such work. In addition, the cost estimates provided were based on a statewide policy and each airport should adjust the maintenance policies and unit costs to match its own approach to pavement maintenance and to reflect local costs.

Branch ¹	Section	Year	Type of Repair ²	Estimated Cost ³
A01JS	10	2016	Rejuvenator	\$20,666
D1120IC	10	2013	Rejuvenator	\$134,166
R1129JS	10	2017	Preventive Maintenance	\$36,052
TAJS	10	2013	Rejuvenator	\$2,704
1AJS	10	2017	Preventive Maintenance	\$375
	10	2013	Rejuvenator	\$6,563
THANGJS	10	2017	Preventive Maintenance	\$1,740
	20	2016	Rejuvenator	\$12,358

Table 3. 5-Year Program under an Unlimited Funding Analysis Scenario.

Localized Maintenance: crack sealing, patching, joint resealing, and so on;

Global Maintenance: surface treatments, rejuvenators, and so on.

¹See Figure 5 for the location of the branch and section.

²Major Rehabilitation: overlay, mill and overlay, reconstruction, and so on;

³Cost estimates based on broad, statewide policy and should be adjusted to reflect local costs.

GENERAL RECOMMENDATIONS

Maintenance

In addition to the specific maintenance actions presented in Appendix E and Appendix F, the following strategies are recommended to prolong pavement life:

- 1. Conduct an aggressive campaign against weed growth through timely herbicide applications. Vegetation growing in pavement cracks is very destructive and significantly increases the rate of pavement deterioration.
- 2. Implement a periodic crack sealing program. Sealing cracks is a proven method for cost-effectively keeping water and debris out of the pavement system and extending its life.
- 3. Ensure that dirt does not build up along the edges of the pavements. This can create a "bathtub" effect—reducing the ability of water to drain away from the pavement system.
- 4. Closely monitor heavy equipment movement, such as construction equipment, emergency equipment, and fueling equipment, to make sure that it is only operating on pavement designed to accommodate the heavy loads this type of equipment often applies. Failure to restrict heavy equipment to appropriate areas may result in the premature failure of airport pavements.
- 5. Other maintenance necessities include keeping all pavement markings well painted, keeping safety signage clear of debris and weeds, ensuring the continuous operation of lighting systems (bulb replacement), and the frequent removal of any debris found in any of the operating areas. In addition, failed pavement areas should be remediated as necessary.

Remaining in Compliance with Public Law 103-305

Public Law 103-305 states that after January 1, 1995, airport sponsors must provide assurances or certifications that an airport has implemented an effective airport pavement maintenance management system (PMMS) before the airport will be considered for funding of pavement replacement or reconstruction projects. To be in full compliance with the Federal law, the PMMS must include the following components at a minimum: pavement inventory, pavement inspections, record keeping, information retrieval, and program funding.

By undertaking this project, the Department has provided Jesup-Wayne County Airport with an excellent basis for meeting the requirements of this law. The airport now has a complete pavement inventory and a detailed inspection. To remain in compliance with the law, the airport will also need to undertake monthly drive-by inspections of pavement conditions and track pavement-related maintenance activities. The next detailed inspection should occur in 2015.

The FAA AC 150/5380-6B provides further information on Public Law 103-305. Specifically, Appendix 1 of this AC outlines what needs to be included in a PMMS to satisfy FAA Grant Assurance 11. A copy of this AC can be found at the following website http://www.faa.gov/regulations_policies/advisory_circulars/index.cfm/go/document.information/documentID/22556.

SUMMARY

This report documents the results of the pavement evaluation conducted at Jesup-Wayne County Airport. During a visual inspection of the pavements in 2012, it was found that the overall condition of the pavement network is a PCI of 93. A 5- year pavement repair program was generated for Jesup-Wayne County Airport, which revealed that approximately \$214,624 needs to be expended on the pavement system to maintain and/or improve its condition.

APPENDIX A CAUSE OF DISTRESS TABLES

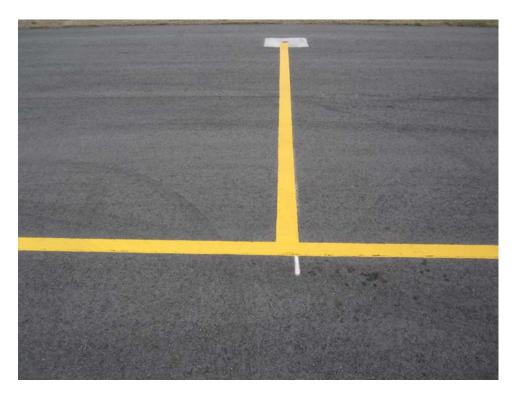
Pavement Management Report - Appendix A

Table A-1. Cause of Pavement Distress, Asphalt-Surfaced Pavements.

Distress Type	Probable Cause of Distress	Feasible Maintenance Strategies
Alligator Cracking	Fatigue failure of the asphalt concrete surface under repeated traffic loading.	If localized, partial- or full-depth asphalt patch. If extensive, major rehabilitation needed.
Bleeding	Excessive amounts of asphalt cement or tars in the mix and/or low air void content.	Spread heated sand, roll, and sweep. Another option is to plane excess asphalt. Or, remove and replace.
Block Cracking	Shrinkage of the asphalt concrete and daily temperature cycling; it is not load associated.	At low severity levels, crack seal and/or surface treatment. At higher severities, consider overlay.
Corrugation	Traffic action combined with an unstable pavement layer.	If localized, mill. If extensive, remove and replace.
Depression	Settlement of the foundation soil or can be "built up" during construction.	Patch.
Jet Blast	Bituminous binder has been burned or carbonized.	Patch.
Joint Reflection Cracking	Movement of the concrete slab beneath the asphalt concrete surface due to thermal and moisture changes.	At low- and medium-severities, crack seal. At higher severities, especially if extensive, consider overlay.
Longitudinal and Transverse Cracking	Cracks may be caused by 1) poorly constructed paving lane joint, 2) shrinkage of the AC surface due to low temperatures or hardening of the asphalt, or 3) reflective crack caused by cracks in an underlying PCC slab.	At low- and medium-severity levels, crack seal. At higher severities, especially if extensive, consider overlay options.
Oil Spillage	Deterioration or softening of the pavement surface caused by the spilling of oil, fuel, or other solvents.	Patch.
Patching	N/A	Replace patch if deteriorated.
Polished Aggregate	Repeated traffic applications.	Aggregate seal coat is one option. Could also groove or mill. Overlay is another option.
Raveling	Asphalt binder may have hardened significantly, causing coarse aggregate pieces to dislodge.	Patch if isolated. At higher severity levels, consider major rehabilitation if extensive.
Rutting	Usually caused by consolidation or lateral movement of the materials due to traffic loads.	Patch medium- and high-severity levels if localized. If extensive, consider major rehabilitation.
Shoving	Where PCC pavements adjoin flexible pavements, PCC "growth" may shove the asphalt pavement.	Mill and patch as needed.
Slippage Cracking	Low strength surface mix or poor bond between the surface and next layer of pavement structure.	Partial- or full-depth patch.
Swelling	Usually caused by frost action or by swelling soil.	Patch if localized. Major rehabilitation if extensive.
Weathering	Asphalt binder and/or fine aggregate may wear away as the pavement ages and hardens.	Patch if isolated. Consider a surface treatment if extensive.

Pavement Management Report - Appendix A

Table A-2. Cause of Pavement Distress, PCC Pavements.


Distress Type	Probable Cause of Distress	Feasible Maintenance Strategies
Alkali Silica Reaction (ASR)	Chemical reaction of alkalis in the portland cement with certain reactive silica minerals. ASR may be accelerated by the use of chemical pavement deicers.	At medium- and high-severity levels, slab replacement is recommended.
Blow-Up	Incompressibles in joints.	Partial- or full-depth patch. Slab replacement.
Corner Break	Load repetition combined with loss of support and curling stresses.	Seal cracks at low-severity. Full-depth patch.
Cracks	Combination of load repetition, curling stresses, and shrinkage stresses.	Seal cracks. At high-severity, may need full-depth patch or slab replacement.
Durability Cracking	Concrete's inability to withstand environmental factors such as freeze-thaw cycles.	Full-depth patch if present on small amount of slab. At higher severity levels, once it has appeared on most of slab, slab replacement.
Joint Seal Damage	Stripping of joint sealant, extrusion of joint sealant, weed growth, hardening of the filler (oxidation), loss of bond to the slab edges, or absence of sealant in joint.	Replace joint seal.
Patching (Small and Large)	N/A	Replace patches if deteriorated.
Popouts	Freeze-thaw action in combination with expansive aggregates.	Monitor.
Pumping	Poor drainage, poor joint sealant.	Seal cracks and joints. Underseal is an option if voids have developed. Establish good drainage.
Scaling	Overfinishing of concrete, deicing salts, improper construction, freeze- thaw cycles, and poor aggregate.	At low-severity levels, do nothing. At medium- and high-severity levels, partial-depth patches or slab replacement.
Settlement	Upheaval or consolidation.	At higher severity levels, leveling patch or grind to restore smooth ride.
Shattered Slab	Load repetition.	Replace slab.
Shrinkage	Setting and curing of the concrete.	Monitor.
Spalling (Joint and Corner)	Excessive stresses at the joint caused by infiltration of incompressible materials or traffic loads; weak concrete at joint combined with traffic loads.	Partial-depth patch.

APPENDIX B

PHOTOGRAPHS

A01JS-10. Overview.

A01JS-10. Satisfactory Paint.

R1129JS-10. Overview.

 $R1129JS\text{-}10.\ Longitudinal\ and\ Transverse\ Cracking\ (Sample\ Unit\ \#03).$

R1129JS-10. Swelling (Sample Unit #63).

R1129JS-10. Unsatisfactory Paint.

TAJS-10. Overview.

 $TAJS-10.\ Longitudinal\ and\ Transverse\ Cracking\ (Sample\ Unit\ \#02).$

TAJS-10. Satisfactory Paint.

THANGJS-10. Overview.

THANGJS-10. Longitudinal and Transverse Cracking (Sample Unit #05).

THANGJS-20. Overview.

APPENDIX C INSPECTION REPORT

GA 2012 FINAL

<NO DISTRESSES>

Report Generated Date: November 20, 2012

Network: JESUP	Name: JESUP-WAYNE	COUNTY AIRPORT				
Branch: A01JS	Name: APRON 01		Use: APRON	Area:	85,967.00SqFt	
Section: 10 Surface: AAC Area: 85,967.00SqFt Shoulder: Street	Family: GAAACAPGA Length: 625	5.00Ft	To: TAXIWA Width: 150.00Ft	XY Zone:	Last Const.: SAT Category:	11/30/2011 Rank: P
Last Insp. Date: 02/11/2 Conditions: PCI: 100 Inspection Comments:		Surveyed: 5				
Sample Number: 05 Sample Comments: <no distresses=""></no>	Type: R	Area:	3,725.00SqFt	PCI = 100		
Sample Number: 08 Sample Comments: <no distresses=""></no>	Type: R	Area:	4,000.00SqFt	PCI = 100		
Sample Number: 10 Sample Comments: <no distresses=""></no>	Туре: R	Area:	5,000.00SqFt	PCI = 100		
Sample Number: 12 Sample Comments: <no distresses=""></no>	Type: R	Area:	5,000.00SqFt	PCI = 100		
Sample Number: 16 Sample Comments:	Type: R	Area:	4,580.00SqFt	PCI = 100		

GA 2012 FINAL Report Generated D

Network:	JESUP	Name: JESU	P-WAYNE COUNT	Y AIRPOR	RT				
Branch:	R1129JS	Name: RUN	WAY 11/29			Use: RU	JNWAY	Area: 609,845.00SqFt	
Section: Surface:	10 AAC		From: 10 APPROA	АСН		To: 2	8 APPRO	ACH Last Const.: 06/01/2 Zone: U-FA Category: Rank:	
	09,845.00SqFt	Length:		_		idth: 100.003	Ft		
Shoulder:	Street T	ype: (Grade: 0.00	Lanes	: 0				
Section Com	ments:								
Last Insp. D Conditions: Inspection Co	PCI : 91	12 Total Sample	es: 88 Sui	rveyed:	13				
Sample Nur		Type: F	1	Area:		5,000.00SqFt		PCI = 90	
Sample Comi 48 LONG		TRANSVERSE	CRACKING		L	148.00	Ft	Comments:lu	
Sample Nur	mber: 13	Туре: Б	2	Area:		5,000.00SqFt		PCI = 81	
Sample Com 48 LONG		TRANSVERSE	CRACKING		L	356.00	Ft	Comments:lu	
Sample Nur		Туре: Б	2	Area:		5,000.00SqFt		PCI = 93	
Sample Comi 48 LONG		TRANSVERSE	CRACKING		L	97.00	Ft	Comments:lu	
Sample Nur		Туре: Б	1	Area:		5,000.00SqFt		PCI = 88	
Sample Com 48 LONG		TRANSVERSE	CRACKING		L	194.00	Ft	Comments:lu	
Sample Nur		Туре: Б	2	Area:		5,000.00SqFt		PCI = 87	
Sample Comi 48 LONG		TRANSVERSE	CRACKING		L	206.00	Ft	Comments:lu	
Sample Nur		Туре: Б	ł	Area:		5,000.00SqFt		PCI = 91	
Sample Comi 48 LONG		TRANSVERSE	CRACKING		L	112.00	Ft	Comments:lu	
56 SWEL	LING				L	6.00	SqFt	Comments:	
Sample Nur Sample Comi		Туре: Б	1	Area:		5,000.00SqFt		PCI = 87	
		TRANSVERSE	CRACKING		L	176.00	Ft	Comments:lu	
56 SWEL	LING				L	13.00	SqFt	Comments:	
Sample Nur Sample Comi		Туре: Б	2	Area:		5,000.00SqFt		PCI = 93	
		TRANSVERSE	CRACKING		L	78.00	Ft	Comments:lu	
56 SWEL	LING				L	3.00	SqFt	Comments:	
Sample Nur Sample Comi		Туре: Б		Area:		5,000.00SqFt		PCI = 93	
-		TRANSVERSE	CRACKING		L	89.00	Ft	Comments:lu	
Sample Nur Sample Comi		Туре: Б	t .	Area:		5,000.00SqFt		PCI = 92	
		TRANSVERSE	CRACKING		L	116.00	Ft	Comments:lu	

GA 2012 FINAL

Report Generated Date: November 20, 2012

-					
Sample Number: 103	Type: R	Area:		5,000.00SqFt	PCI = 96
Sample Comments: 48 LONGITUDINAL/	TRANSVERSE CRACKING		L	33.00 Ft	Comments:lu
Sample Number: 113 Sample Comments:	Type: R	Area:		3,500.00SqFt	PCI = 92
_	TRANSVERSE CRACKING		L	62.00 Ft	Comments:lu
56 SWELLING			L	12.00 SqFt	Comments:
Sample Number: 119	Type: R	Area:		3,500.00SqFt	PCI = 98
Sample Comments: 48 LONGITUDINAL/	TRANSVERSE CRACKING		L	3.00 Ft	Comments:lu

GA 2012 FINAL

56 SWELLING

Report Generated Date: November 20, 2012

Report Ge												
Network:	JESUP	Name:	JESUP-WA	YNE COUNT	Y AIRPOR	Г						
Branch:	TAJS	Name:	TAXIWAY	A			Use: TAXIWAY	Area:	12	2,291.00SqFt		
Section:	10	of 1	From:	RUNWAY	10/28		To: APRON 01			Last Const.:	06/01/20	006
Surface:	AAC	Fami	ily: GAAAC	TWYGA3SO	UTH			Zone:	SAT	Category:	Rank:	P
Area:	12,291.00SqFt	I	Length:	222.00Ft		Width	: 40.00Ft					
Shoulder:	Street	Гуре:	Grade:	0.00	Lanes:	0						
Condition	Date: 02/11/2	012 Total S	Samples:	2 Sur	veyed: 2	<u>.</u>						
Condition		012 Total S	Samples:	2 Sur	veyed: 2	?						
Condition Inspection Sample N	s: PCI: 93 Comments:		Samples:	2 Sur	veyed: 2		044.00SqFt	PCI = 90				
Condition Inspection Sample No	s: PCI: 93 Comments:	Т	ype: R				044.00SqFt 123.00 Ft		ents:1	Lu		
Condition Inspection Sample Notes Sample Condition	s: PCI:93 Comments: umber: 01 mments:	Т	ype: R			5,0	•			Lu		
Condition Inspection Sample Notes Sample Condition	ss: PCI: 93 Comments: fumber: 01 mments: GITUDINAL ELLING fumber: 02	T /TRANSV	ype: R			5,0 L L	123.00 Ft	Comme		Lu		
Condition Inspection Sample No Sample Con 48 LON 56 SWE Sample No Sample No	ss: PCI: 93 Comments: fumber: 01 mments: GITUDINAL ELLING fumber: 02	T /TRANSV T	ype: R TERSE CRA	ACKING	Area:	5,0 L L	123.00 Ft 8.00 SqFt	Comme Comme PCI = 95				

L

48.00 Ft Comments:lu 3.00 SqFt Comments:

Re-inspection Report

GA 2012 FINAL

Report Generated Date: November 20, 2012

48 LONGITUDINAL/TRANSVERSE CRACKING

Network: JESUP	Nam	e: JESUP-WAYN	NE COUNTY AI	RPORT							
Branch: THAN	GJS Nam	e: T-HANGAR				Use: THANG	GAR	Area:	81	,237.00SqFt	
Section: 10 Surface: AC	of Fa	2 From: I	EDGE OF APRO	ON		To: END	OF BLDG	Zone:	N/A	Last Const.: Category:	06/01/2001 Rank: P
Area: 29,831.0 Shoulder: 5	0SqFt Street Type:	Length: Grade:	234.00Ft 0.00 I	anes:	Width:	125.00Ft					
Section Comments:											
Last Insp. Date: 02 Conditions: PCI: Inspection Comments Sample Number:	91	Type: R	Surveye	ed: 4 Area:	4,750.0	0SqFt	PC:	I = 95			
Sample Comments: 48 LONGITUD:	INAL/TRANS	SVERSE CRAC	KING]		39.00 Ft		Comme	ents:1	u	
Sample Number: Sample Comments:	02	Type: R	A	rea:	4,750.0	00SqFt	PC:	I = 90			
48 LONGITUD	INAL/TRANS	SVERSE CRAC	KING]		147.00 Ft		Comme	ents:1	u	
Sample Number: Sample Comments:	04	Type: R	A	rea:	4,750.0	00SqFt	PC:	I = 91			
48 LONGITUD:	INAL/TRANS	SVERSE CRAC	KING]	_	121.00 Ft		Comme	nts:1	u	

L

198.00 Ft

Comments:lu

Re-inspection Report

GA 2012 FINAL

Report Generated Date: November 20, 2012

Network: JES	SUP	Name:	JESUP-WAY	'NE COUNTY	AIRPORT	Γ					
Branch: TH	IANGJS	Name:	T-HANGAR				Use: THANGAF	R Area:	8	1,237.00SqFt	
Section: 20 Surface: AC Area: 51,40 Shoulder:	C 06.00SqFt Street Ty			THANGJS-10 HGA3SOUTH 300.00Ft 0.00	Lanes:	Width:	To: END OF 167.00Ft	NEW THANGAR Zone:	N/A	Last Const.: Category:	06/02/2011 Rank: P
Last Insp. Date Conditions: P Inspection Comm	PCI : 100	12 Total S	amples: 9	Surve	eyed: 4						
Sample Numbe Sample Commen <no distr<="" td=""><td>nts:</td><td>Ту</td><td>pe: R</td><td></td><td>Area:</td><td>5,550.00\$</td><td>SqFt</td><td>PCI = 100</td><td></td><td></td><td></td></no>	nts:	Ту	pe: R		Area:	5,550.00\$	SqFt	PCI = 100			
Sample Numbe Sample Commen <no distr<="" td=""><td>nts:</td><td>Ту</td><td>pe: R</td><td></td><td>Area:</td><td>5,550.00\$</td><td>SqFt</td><td>PCI = 100</td><td></td><td></td><td></td></no>	nts:	Ту	pe: R		Area:	5,550.00\$	SqFt	PCI = 100			
Sample Numbe Sample Commen <no distr<="" td=""><td>nts:</td><td>Ту</td><td>pe: R</td><td></td><td>Area:</td><td>5,550.00\$</td><td>SqFt</td><td>PCI = 100</td><td></td><td></td><td></td></no>	nts:	Ту	pe: R		Area:	5,550.00\$	SqFt	PCI = 100			
Sample Numbe Sample Commen <no distr<="" td=""><td>nts:</td><td>Ту</td><td>pe: R</td><td></td><td>Area:</td><td>5,800.005</td><td>SqFt</td><td>PCI = 100</td><td></td><td></td><td></td></no>	nts:	Ту	pe: R		Area:	5,800.005	SqFt	PCI = 100			

APPENDIX D

MAINTENANCE POLICIES AND UNIT COSTS

Table D-1. Localized Maintenance Policy, Asphalt-Surfaced Pavements.

Distress Type	Severity Level	Maintenance Action
	Low	Monitor
Alligator Cracking	Medium	AC Patching
	High	AC Patching
Bleeding	N/A	Monitor
	Low	Monitor
Block Cracking	Medium	Crack Sealing – AC
-	High	Crack Sealing – AC
	Low	Monitor
Corrugation	Medium	AC Patching
-	High	AC Patching
	Low	Monitor
Depression	Medium	AC Patching
	High	AC Patching
Jet Blast	N/A	AC Patching
	Low	Monitor
Joint Reflection Cracking	Medium	Crack Sealing – AC
	High	Crack Sealing – AC
	Low	Monitor
Longitudinal and Transverse	Medium	Crack Sealing – AC
Cracking	High	Crack Sealing – AC
Oil/Fuel Damage	N/A	AC Patching
	Low	Monitor
Patching	Medium	Monitor
<u> </u>	High	AC Patching
Polished Aggregate	N/A	Monitor
	Low	Monitor
Raveling	Medium	AC Patching
C	High	AC Patching
	Low	Monitor
Rutting	Medium	AC Patching
C	High	AC Patching
	Low	Monitor
Shoving	Medium	AC Patching
	High	AC Patching
Slippage Cracking	N/A	AC Patching
1100	Low	Monitor
Swelling	Medium	AC Patching
	High	AC Patching
	Low	Monitor
Weathering	Medium	Monitor
5	High	AC Patching

Table D-2. Localized Maintenance Policy, PCC Pavements.

Distress Type	Severity Level	Maintenance Action
	Low	Monitor
Alkali Silica Reaction (ASR)	Medium	Slab Replacement
	High	Slab Replacement
	Low	Slab Replacement
Blow-Up	Medium	Slab Replacement
	High	Slab Replacement
	Low	Crack Sealing – PCC
Corner Break	Medium	PCC Full Depth Patch
	High	PCC Full Depth Patch
	Low	Crack Sealing – PCC
LTD Cracking	Medium	Crack Sealing – PCC
	High	Crack Sealing – PCC
	Low	Monitor
Durability Cracking	Medium	Slab Replacement
	High	Slab Replacement
	Low	Monitor
Joint Seal Damage	Medium	Joint Sealing – PCC
	High	Joint Sealing – PCC
	Low	Monitor
Patching (Large and Small)	Medium	PCC Full Depth Patch
	High	PCC Full Depth Patch
Popouts	N/A	Monitor
Pumping	N/A	Monitor
	Low	Monitor
Scaling	Medium	Slab Replacement
	High	Slab Replacement
	Low	Monitor
Faulting	Medium	Monitor
	High	PCC Partial Depth Patch
	Low	Crack Sealing – PCC
Shattered Slab	Medium	Slab Replacement
	High	Slab Replacement
Shrinkage	N/A	Monitor
	Low	Monitor
Spalling (Joint and Corner)	Medium	PCC Partial Depth Patch
	High	PCC Partial Depth Patch

Table D-3. 2012 Unit Costs for Localized Maintenance Actions, General Aviation Airports.

Maintenance Action	Unit Cost					
Maintenance Action	Metro	North	South			
AC Patching	\$3.19/sf	\$3.18/sf	\$3.28/sf			
Crack Sealing – AC	\$2.02/lf	\$2.02/lf	\$1.95/lf			
Crack Sealing – PCC	\$2.71/lf	\$2.71/lf	\$2.71/lf			
Joint Sealing – PCC	\$2.71/lf	\$2.71/lf	\$2.71/lf			
PCC Partial Depth Patch	\$12.84/sf	\$12.84/sf	\$12.84/sf			
PCC Full Depth Patch	\$43.32/sf	\$43.32/sf	\$43.32/sf			
Slab Replacement	\$43.32/sf	\$43.32/sf	\$43.32/sf			

Table D-4. 2012 Unit Costs for Localized Maintenance Actions, Air Carrier Airports.

Maintenance Action	Unit Cost
AC Patching	\$3.47/sf
Crack Sealing – AC	\$6.25/lf
Crack Sealing – PCC	\$2.71/lf
Joint Sealing – PCC	\$2.71/lf
PCC Partial Depth Patch	\$12.84/sf
PCC Full Depth Patch	\$43.32/sf
Slab Replacement	\$43.32/sf

Table D-5. 2012 Unit Costs for Global Maintenance Actions, General Aviation Airports.

Maintananaa Aatian	Unit Cost				
Maintenance Action	Metro	North	South		
Single Surface Treatment	\$0.26/sf	\$0.12/sf	\$0.19/sf		
Pavement Rejuvenator	\$0.22/sf	\$0.22/sf	\$0.22/sf		

Table D-6. 2012 Unit Costs for Global Maintenance Actions, Air Carrier Airports.

Maintenance Action	Unit Cost
Single Surface Treatment	\$0.43/sf
Pavement Rejuvenator	\$0.22/sf

Table D-7. 2012 Major Rehabilitation Unit Costs Based on PCI Ranges for Asphalt-Surfaced Pavements.

Type of				PCI I	Range			
Airport ¹	0 – 29	30 – 39	40 – 49	50 – 59	60 – 69	70 – 79	80 – 89	> 89
G.A., Metro	\$6.09/sf	\$6.09/sf	\$6.85/sf	\$1.96/sf	\$1.96/sf	\$1.96/sf	\$1.96/sf	\$1.96/sf
G.A., North	\$5.14/sf	\$5.14/sf	\$5.38/sf	\$1.71/sf	\$1.71/sf	\$1.71/sf	\$1.71/sf	\$1.71/sf
G.A., South	\$5.00/sf	\$5.00/sf	\$5.42/sf	\$1.87/sf	\$1.87/sf	\$1.87/sf	\$1.87/sf	\$1.87/sf
Air Carrier	\$6.52/sf	\$6.52/sf	\$2.62/sf	\$2.62/sf	\$2.62/sf	\$2.62/sf	\$2.62/sf	\$2.62/sf

¹G.A. = General Aviation

Table D-8. 2012 Major Rehabilitation Unit Costs Based on PCI Ranges for PCC-Surfaced Pavements.

Type of				PCI R	ange			
Airport ¹	0 - 29	30 – 39	40 – 49	50 – 59	60 – 69	70 – 79	80 – 89	> 89
G.A., Metro	\$9.50/sf	\$9.50/sf	\$1.96/sf	\$1.96/sf	\$1.96/sf	\$1.96/sf	\$1.96/sf	\$1.96/sf
G.A., North	\$9.87/sf	\$9.87/sf	\$1.71/sf	\$1.71/sf	\$1.71/sf	\$1.71/sf	\$1.71/sf	\$1.71/sf
G.A., South	\$9.71/sf	\$9.71/sf	\$1.87/sf	\$1.87/sf	\$1.87/sf	\$1.87/sf	\$1.87/sf	\$1.87/sf
Air Carrier	\$9.68/sf	\$9.68/sf	\$2.62/sf	\$2.62/sf	\$2.62/sf	\$2.62/sf	\$2.62/sf	\$2.62/sf

¹G.A. = General Aviation

APPENDIX E

YEAR 2013 MAINTENANCE PLAN ORGANIZED BY SECTION

Table E-1. 2013 Maintenance Plan Organized by Section.

No preventive maintenance was scheduled for 2013.

APPENDIX F

YEAR 2013 MAINTENANCE PLAN ORGANIZED BY REPAIR TYPE

Table F-1. 2013 Maintenance Plan Organized by Repair Type.

No preventive maintenance was scheduled for 2013.

Georgia Department of Transportation

For more information contact:

Georgia Department of Transportation
Aviation Programs

600 West Peachtree Street Atlanta, Georgia 30308 Contact phone: 404.631.1990 Web: dot.ga.gov/aviation

Prepared by:

